ZPD-9209B

TEV 局部放电巡检仪

使用手册

武汉智能星电气有限公司

尊敬的用户:

感谢您购买本公司局部放电巡检仪。在您初次使用该产品前,请详细阅读使用说明书。

该仪器用于探测中/高压(MV/HV)设备中的局部放电源。如果没有探测到放电,其并不意味着中高压设 备中无放电活动。放电源往往具有潜伏期,绝缘性能也可能会由于局部放电以外的其他原因而失效。如果检 测到与中高压电力系统相连的设备中有相当大的放电,应立即通知对设备负责的相关单位。

- 始终保持高压部分与仪器、探头和操作人员之间的安全距离。
- 严格遵守当地安全规则。
- 附近有雷暴天气时,不得进行测量。
- 不得在爆炸环境中操作仪器或附件。
- 使用产品时,请按说明书规范操作
- 仪器电池报警后请关机充电。

藝告:

- 未经允许,请勿开启仪器,这会影响产品的保修。自行拆卸厂方概不负责。
- 存放保管本仪器时,应注意环境温度和湿度,放在干燥通风的地方为宜,要防尘、防潮、防震、防酸碱 及腐蚀气体。 engting
- 仪器运输时应避免雨水浸蚀,严防碰撞和坠落。

1. 产品概述	
2. 引用标准	
3. 产品简介	5
4. 暂态地电压(TEV)测量原理4	5
5. 超声波(US)测量原理	10
6. 技术参数	
7. 仪器基本操作	
7.1 仪器开启/关闭	
7.2 自检及系统信息	
7.3设置	
7.4TEV 测量10	
7.5 US 测量14	
7.6 数据存储16	
7.7 数据查看16	
7.8 外同步的使用16	
7.9 传感器的使用17	
7.10 仪器充电	
8. 检测流程及声电联合检测有效性18	
8.1 TEV 局部放电检测流程18	
8.2US 局部放电检测流程19	
8.3 声电联合检测	
9. 巡检报告	

ZPD-9209 BTEV 局部放电巡检仪

1. 产品概述

开关柜的故障类型一般可分为拒动/误动故障、绝缘故障、开断与关合故障、载流故障、外力及其他故障。中国电力科学院对 1989~1997 年和 2004 年 40.5KV 以下开关设备的故障进行了统计,其中绝缘与载流性故障占 30%~53%。而广东电网公司对 1992~2002 年开关设备故障类型的统计结果显示,绝缘与载流性故障的比例甚至高达 66% .以上两种故障均与放电现象有关。近年来,英国电力企业对国内使用中压真空开关进行故障统计:其中误操作和机械性两类故障占 30%~38%;放电互感器和电缆箱类故障占 26%~44%。这些故障都会伴随着局部放电现象的产生。采用传统方法检测需浪费大量的财力,造成巨大的损失。

局部放电巡检仪采用暂态对地电压(TEV)测量和超声波(US)测量两种新兴技术对开关柜进行故障检测。 设备采用便携式,操作简单,TEV 传感器贴在箱壁,US 传感器沿着开关柜上的缝隙扫描检测,对高压开关及 开关柜无任何损害,所有的检测对高压开关及开关柜设备的运行不产生任何影响。该产品可以对测量进行信 号多周期观察,对放电进行频率识别,并通过多种模式进行分析,能够清楚地判断出开关柜是否出现故障。 其测量技术在国内外已达领先水平。

ing

2. 引用标准

- ▶ 局部放电测量 GB/T 7354
- ▶ 电力设备局部放电现场测量导则 DL/T 417
- ▶ 高电压试验技术 第一部分:一般试验要求 GB/T 16927.1
- ▶ 高电压试验技术 第二部分:测量系统 GB/T 16927.2
- ▶ 高电压试验技术 第3部分:现场试验的定义及要求 GB/T 16927.3

3. 产品简介

本产品主要由以下几部分组成:

- · 局部放电巡检仪一台。
- · 主机充电器一套
- 传感器1个。
- · 非接触式超声传感器1个
- 50Ω同轴电缆2条。
- 无线同步发射器及电源线一套。
- ・ 读卡器1个。
- · 后台报告生成软件光盘1个

4. 暂态地电压(TEV)测量原理

当配电设备发生局部放电现象时,带电离子会快速地由带电体向接地的非带电体快速迁移,如配电设备 的柜体,并在非带电体上产生电流行波,且以光速向各个方向快速传播。受集肤效应的影响,电流行波往往 仅集中在柜体的内表面,而不会直接穿透金属柜体。但是当电流行波遇到不连续的金属断开或绝缘连接处时, 电流行波会有金属柜体内表面转移到外表面,并以电磁波形式向自由空间传播,且在金属外表面产生暂态地 电压。而该电压可用专用的 TEV 传感器布置在开关柜外面进行测量。TEV 传感器类似传统的 RF 耦合电容器, 其壳体可做绝缘和保护双重功能,传感器内部可感应出高频脉冲电流信号。其测量原理如图:

图 0-1 TEV 检测原理

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com 地址:武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 4 电话: 027-87678728 15872398130 E-mail: whznx188@163.com

5. 超声波(US)测量原理

局部放电发生前,放点点周围的电场力绝缘介质的机械应力和粒子力处于相对平衡状态。局部放电发生时电荷的快速释放或迁移使电场发生改变,打破了平衡状态,引起周围粒子发生震荡性机械运动,从而产生声音或振动信号。超声波法通过在设备腔体外壁上安装超声波传感器来测量局部放电信号。该方法特点是传感器与地理设备的电气回路无任何联系,不受电器方面的干扰,但在现场使用时容易受周围环境噪声或设备机械振动的影响。由于超声信号在电力设备常用绝缘材料中的衰减较大,超声波检测法的检测范围有限,但具有定位准确度高的优点。局部放电产生的声波的频谱很宽,可以从几十Hz 到几 MHz,其中频率低于 20kHz 的信号能够被人耳听到,而高于这一频率的超声波信号必须用超声波传感器才能接收到。通过测量超声波信号的声压大小,推测放电的强弱。

图 0-1 US 测量原理

6. 技术参数

主机参数			
可检测通道数	2个通道,1个TEV通道,1个US通道		
采样精度	12bit		
同步方式 内同步,外同步,光同步			
TEV 参数			
检测带宽	3M-80MHz		
测量范围	0~60dB		

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com 地址: 武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 5 电话: 027-87678728 15872398130 E-mail: whznx188@163.com

测量误差	±1dB	
分辨率	1dB	
每周期最大脉冲数	720 个	
最小脉冲频率	10Hz	
输出接口	标准 SMA	2
US 参数		\supset
中心频率	40kHz	$\langle \langle \rangle$
分辨率	0. 1uV	Y
精度	±0.1uV	
测量范围	0.5uV~1mV	
输出接口	标准 SMA	
硬件		
显示屏	4.3" TFT 真彩色液晶显示屏	
分辨率	480×272	
操作	薄膜按键	
存储	SD 卡标配 16G 卡,最大支持 32G	
接口	3.5mm 立体声耳机插孔	
	DC-005 低压直流充电器输入口	
	充电 LED 指示灯	
	RS232 调试口	
	USBD 同步口	
	USB2. 0	
	网口	
	SD卡插槽	
电源		
内部电源	电池供电(16.8V 锂电池)	
正常工作时间	约7小时,充满时间约3小时	
尺寸		

长×宽×高	235 mm $\times 133$ mm $\times 48$ mm	
重量	0. 85kg	
环境		
使用环境温度	-20℃至 50℃	
存储环境温度	-40°C~70°C	
湿度	10%-90%(非冷凝)	$\langle \rangle \rangle$
海拔高度	≤3000m	1

7. 仪器基本操作

图 0-1 整机接口图

7.1 仪器开启/关闭

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

▶ 按键对该位置进行修改,修改完毕后使用 ♥ 和 ▶ 按键调整到没有闪烁区域后,使用 ♥

按键选择想要修改的其他项目。

▶ 系统设置

和

图 0-3 系统设置画面 SZ

- · 文件名称一显示数据存储文件的名称,显示当前存储状态。
- · 设备名称一被检测设备的编号。
- · 任务编号—试验任务编号。
- · 测量通道一当前工作通道。
- · 同步方式一选择同步方式,内同步、光同步、外同步。
 - 内同步: 可检测电力设备是否存在放电及其放电大小。
 - 光同步: 在室内或其他无阳光直射地点检测时, 需打开白炽灯, 可将同步方式改为光同步。 外同步: 为了得到稳定而且准确的相位。
- · 按键声音一按键声音开、关控制。
- · 日期时间一系统日期时间设置。
- · 图片存储位置一设置图片存储路径,可存储在 SD 卡内,也可通过 USB 口存储到终端设备。
- ▶ US 设置

- · 预警值(黄色)一设定黄色"交通灯"门限值(默认值 3mV)
- · 报警值(红色)一设定红色"交通灯"门限值(默认值7mV)
- ・ 増益一通道増益调节,系统采用自动増益控制调节,范围为:42dB、35dB、28dB、21dB、14dB、7dB、 0dB、-7dB。
- · 测量模式—US测量模式的切换,包含波形模式、连续模式、相位模式。
- · 波形模式周波数一更改波形模式下显示波形的周波数量。
- ▶ TEV 设置

图 0-5 TEV 设置画面

- · 预警值(黄色)一设定黄色"交通灯"门限值(默认值 20dBmV)
- · 报警值(红色)一设定红色"交通灯"门限值(默认值 29dBmV)
- · 测量模式—HFCT 显示模式的切换,包含波形模式、统计模式、脉冲模式。
- · 统计模式统计时长一设置统计模式的统计时间
- ▶ 系统信息

图 0-6 系统信息画面

浏览在加电时显示的系统信息。

7.4TEV 测量

TEV 有 3 种测量模式: 波形模式、统计模式、脉冲模式。

▶ TEV—波形模式

在<u>系统设置中测量方式</u>选择<u>TEV</u>,按

按钮进入显示画面:

图 0-7 TEV 波形运行模式

- · 测量通道一显示正在测量的通道。
- · 测量模式/显示模式--显示当前测量模式(正常模式、脉冲模式,统计模式。)
- · 触发方式一显示当前触发方式及运行状态。
- · 时间日期一显示系统时间日期。
- · 电池状态一显示当前剩余电池电量。
- · 报警指示一显示当前的报警状态,如绿色、黄色或红色,具体由设定值决定。默认值为:小于 20 dB = 绿色、20-29 dB = 黄色、以及大于 29dB = 红色。
- · 测试背景一显示当前测试背景,在停止状态下,点击
- · 峰值读数一当前周波测量到的峰值读数,用 dBmV 表示。
- · 报警历史一以流动柱状态图的形式显示最近 20 个测量值, 色彩编码类似于交通指示灯。还可以通

过按下 按钮来清除历史。

历史最大读数一进入测量模式以来,所获得的最大读数。还可以通过按下 按钮来复位。 操作指示一系统对当前画面可用操作进行提示。

波形图一显示测量波形可显示多个周波根据放电特性来判断是否放电,通过 和 2 按 按 钮可对波形幅值显示进行缩放。

描认

保存测试背景。

图 0-8 TEV 波形停止模式

- · 保存记录—以数据库的形式对测量数据,波形进行存储。
- · 查看记录一查看测量数据,对数据进行处理。
- · 设为背景一将当前测得值设为背景值。
- · 清除历史一对报警历史进行清除处理。
- · 存储图片一将测得波形以图片形式进行保存。
- ▶ TEV—统计模式

在 <u>TEV 设置中测量模式</u>选择<u>统计模式</u>后,点击

按钮进入显示画面,TEV的统计模式有3种显示模

式,若要在各模式之间进行切换,则可以在运行状态下使用左、右方向键在各个不同显示屏之间进行切换

指纹图

图 0-9 显示模式切换

・二维图谱(峰值图谱)

显示单周期内波形幅值和相位的关系,以及脉冲次数与相位的关系。

・二维图谱(指纹图)

该模式下纵轴代表放电水平,横轴代表相位 0-360 度,不同的像素颜色代表不同的峰值频次。点击

按钮开始重新统计。

・三维图谱 (Q-Φ-T)

该模式纵轴代表放电水平,横轴代表相位,Z轴代表时间,脉冲不同颜色代表放电水平的大小不同,右侧颜色标识代表纵轴不同的百分比所使用的不同颜色。通过该模式可以区分干扰和放电,以及随时间变化不同相位信号的变化。

▶ TEV一脉冲模式

权消

TEV 邮中模;	✿	2015/08/10 16:42:07	18
脉冲数/	25: 69864	42	
脉冲数/	周期: 698	dBmV	
严重度:	87873		
【F1】停止	【123】查看记录 【	F4】 끉코	
	图 0-10 脉	〈冲模式	

在 <u>TEV 设置</u>中<u>测量模式</u>选择<u>脉冲模式</u>后,点击

按钮进入显示画面:

- · 脉冲数/2S-显示在 2 秒期间内的脉冲计数。
- · 脉冲数/周期一显示 50Hz 主频率下的每周期内的脉冲数。
- · 严重度一显示短期严重度(根据 TEV 幅值(mV) x 每周期内的脉冲数计算)。

7.5 US 测量

US有3种测量模式:波形模式、连续模式、相位模式。

在系统设置中测量方式选择 US, US 设置中选择需要的测量模式后,点击 🚩 按钮进入显示画面。

▶ US—波形模式

波形检测模式用于对被测信号的原始波形进行诊断分析,以便能直观的观察被测信号是否存在异常。

图 0-11 US 波形模式测量画面

▶ US—连续模式

连续检测模式是局部放电超声波检测中应用最为广泛的一种检测方法。可迅速检测被测信号特征,显示 直观,响应速度快。该模式通过不同参数值的大小组合判断被测设备是否存在局部放电以及可能的放电类型。

US	连续模式 乡	↑同步<停止>		2015 17:	08/15 03:01	36%
0	0.2 / 192		有效值			8µV
0	1.0 / 8.4	, , , , , , , , , , , , , , , , , , , ,	, J期峰值	i it	1 <u>89</u> (4)	ر V بر 20
0	0.0 / 0.4	50	, -tz相关性	î r		ر 2µV
0	0.0 / 1.1	100	, Hz相关性			2µV
【F1】 【确知	】运行 注】设为背景	【F2】保存记录 【→】存储图片	(F3)	查看记录	【F4】设	불

图 0-12 US 连续模式测量画面

- · 按下 F1 停止后,再点击确定可设置背景。
- · 有效值一显示被测信号在一个周期内的有效值。
- · 周期峰值一显示被测信号在一个周期内的峰值。
- · 50Hz 相关性一显示被测信号 50Hz 频率成分。
- · 100Hz 相关性一显示被测信号 100Hz 频率成分。

▶ US—相位模式

由于局部放电信号的产生与工频电场具有相关性,因此可以讲工频电压作为参考量,通过观察被测信号的发生相位是否具有聚集效应来判断被测信号是否因设备内部放电引起的。

图 0-13 US 相位模式测量画面

横轴为角度(0~360°),纵轴为信号幅值(mV)。

按下 后, 可查看存储记录。

点击 按钮可以消除统计。

7.6 数据存储

系统将数据存储在 SD 卡中,为了保证软件正常存储及读取,应保证 SD 卡有效。在存储前应先系统设置 中设置文件名称、设备名称、任务编号,以作为日后查看标识。

在停止状态下,按下上接接,可对数据及图形进行存储。

7.7 数据查看

F

停止状态下按下 接接,可打开历史数据窗口,在该窗口下,可对记录进行删除,对文件可进行导出和删除,同时提供蓝牙发送接口。

历史数据	内同步。	<停止>	2015/05 09:05:	/28 55 518
序号	任务编号	局放值	背景值	测量方式
G 1	1	49dBmV	-23dBmV	HFCT
2	1	49dBmV	-23dBmV	HFCT
*# 5 *		the K in	1. 4.7	/ # · =
又什名称: 【F1】删除	1.DB3 本条 【F2 】删	开2条化3 除文件 【F3	┏	/ 第1贝 4 】 营开发送
【!] 选择	[←→] 翻	页 【确定	〕返回	

图 0-14 历史数据画面

7.8 外同步的使用

在现场试验时,为了得到稳定而且准确的相位,可以采用外同步触发方式,在系统设置里,将触发方式 改成外同步,将无线同步发射器接到试验电源上,点击运行,此时放电相位为稳定而准确的相位。 注意:无线同步连接试验电源时,应严格按照 LNE 的表示进行接线。

图 0-15 无线同步发射器

7.9 传感器的使用

➤ TEV 传感器

TEV 传感器能够感应出开关柜金属柜体上的暂态电压形成一定的高频感应电流。使用时将 TEV 传感器紧贴在金属柜体上。

图 0-16 TEV 传感器图片

> 非接触式超声传感器(CS)使用

非接触式超声传感器是对发生局放时在空气中传播的超声波进行检测。要求放电源与传感器之间必须有 良好的空气路径,对于封闭良好,无气孔及空气间隙的开关柜将无法检测。使用时将传感器吸附在开关柜体 上,防止超声移动产生干扰信号,并将超声探头对准设备的缝隙处进行检测。

图 0-17 非接触式超声传感器 (CS) 图片

7.10 仪器充电

第一次使用前,应为该装置充电。完全充电所需时间大约4小时;但是,如果该装置已经部分充电,则 应减少充电时间。一旦电池充满,指示灯变为绿色。充电状态由靠近充电器插孔旁边的LED指示。 •如果LED熄灭,该装置未充电,如果接入电源适配器后充电指示灯不亮,表示充电线路有故障,请检查电

源适配器是否通电。

- •如果 LED 红色,则表示电池正在充电。
- •如果 LED 绿色,则表示电池已充满。
- •充电时务必关闭局部放电巡检仪。
- •充电器插入时,不得用仪器进行测量。

注: 对本仪器内置电池进行充电时,必须使用本仪器配带的专用电源适配器充电,不得使用其它电源,否则 可能造成电池或仪器损坏!

8. 检测流程及声电联合检测有效性

- 8.1 TEV 局部放电检测流程
 - 1) 设置参数:点击 💴 设置文件名,设备名称,任务编号,测量方式选择 TEV;再点击 🛄,通过

💌 🕶 选择测量模式,点击🧳 🌭选为波形模式(出厂默认模式),再点击 严 返回测量界面。

2) 背景检测:连接 TEV 传感器,将传感器贴在接地的金属体上(非测量源)当信号稳定时按下 🧰 停

🖉 止运行,再点击 🌌 ,记录下背景值,点击 🏜 运行。

3) 信号检测:将传感器紧贴在检测部位开关柜发生放电的主要部位为母排(连接处、穿墙套管,支撑绝缘件等)、断路器,CT、PT、电缆等设备所对应到开关柜柜壁的位置,这些设备大部分位于开关柜前面板中部及下部,后面板上部、中部及下部、侧面板的上部、中部及下部(开关柜 TEV 检测部位如图 8-1)。

 4) 异常诊断:当通过波形模式检测到信号时,应对局部放电进行诊断与分析,观察信号的周期性通过改 变测量模式记录和分析信号。

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

- 阳 F2 停止,点击 5) 数据记录:通过仪器的记录功能将数据保存:在各个模式下点击 保存记录, 以供后期分析。
- F3 , 再点击 6) 生成报告: 取下 SD 卡, 或在 USB 端口插入 U 盘在停止状态下点击 文件导出可将 数据导出到U盘,按照第9章生成巡检报告。

图 0-1 TEV 检测部位示意图

8.2US 局部放电检测流程

- 设置文件名,设备名称,任务编号,测量方式选择 US;再点击 1) 设置参数:点击 ,测量模式 选为连续检测模式,仪器会根据信号自动转换增益(常规检测时无需设置,可使用内置参数)。
- 背景检测:将传感器对着空旷的地方,当信号保持稳定时按下 停止运行,再点击 ,记录下 2)

背景值,点击 运行。

- 信号检测:将超声波传感器探头沿着柜体上的缝隙进行扫描检测,观察波形变化。 3)
- 异常诊断与分析: 当检测到周期性信号时进行分析, 观察在连续检测模式下 50Hz 频率成分, 100Hz 频 4) 率成分的大小,并与背景信号比较,看是否有明显变化。并且开展局部放电诊断与分析,包括通过应 用相位检测模式,时域波形检测模式判断放电类型;或是挪动传感器位置,寻找信号最大值,查明可 能的放电位置。

图表 0-1	←1 US 检测缺陷判据				
	参数	局部放电缺陷	电晕缺陷	正常(无放电)	
オム	有效值	高	较高	低	
上 (共) (本) (三)	周期峰值	高	较高	低	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50Hz 频率相关性	有	有	无	
(天八	100Hz 频率相关性	有	弱	无	

![](_page_20_Picture_0.jpeg)

相位检测模式	有规律,一周波两簇 信号,且幅值相当	有规律,一周波一簇 大信号,一簇小信号	无规律
波形检测模式	有规律,存在周期性 脉冲信号	有规律,存在周期性 脉冲信号	无规律

停止,点击 F2 印 5) 数据记录:通过仪器的记录功能将数据保存:在当前模式下点击 保存记录,按 照第8.1节第6步生成检测报告。

![](_page_20_Figure_3.jpeg)

图 0-2 US 检测位置示意图

# 8.3 声电联合检测

为了更加有效地检测出高压开关柜和工频试验变压器的局部放电及其放电类型,应将超声波(US)测量 法与暂态地电压(TEV)测量法联合使用。经过长期实验室物理模拟开关柜放电现象,发现了其各自的特点 (见下表)。

图表 0-2

声电检测技术技术的区别

放电模型	暂态地电压检测技术	超声波检测技术
沿面放电模型	不敏感	敏感、有效
绝缘子表面放电模型	不敏感	敏感、有效
尖端放电模型	敏感、有效	更敏感、有效
电晕放电模型	敏感、有效	敏感、有效
绝缘子内部缺陷模型	敏感、有效	不敏感

下图为实验室模拟开关柜局部放电模型:

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

图 0-3 部分局部放电物理模

#### 9. 巡检报告

巡检数据可通过 SD 卡或者 U 盘等导出到 PC 机中,从而完成用户报告的创建。报告生成对 PC 机的要求:

系统:为 XP 系统或 WIN7 系统。

软件: 应安装 Microsoft Word2003 或者 Word2007。

运行 DR. exe 软件, 启动界面如下:

![](_page_21_Picture_8.jpeg)

图 0-1 DR. exe 主界面

加载数据文件一加载要创建报告的数据文件。 关闭数据文件一关闭已经加载的数据文件。 全选一对数据记录全选。 Ć

![](_page_22_Picture_0.jpeg)

反选一反选数据记录。 创建报告一点击创建报告。 退出一退出软件。

![](_page_22_Picture_2.jpeg)

图 0-2 报告样例

WuHan.

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com